2014 Competence Survey Report

Globally-required Abilities: The result of 2014 Competence Survey

2015/12/20

GLU12 Universities Tuning Working Group

Mori Arinori Center Higher Education and Global Mobility

1. Introduction

The Tuning Working Group, established in December 2013 under the Education Reform and Promotion Committee, has discussed the internationalization of university education, the restructuring of curricula and the systematization of syllabus according to international standards, the development of credit transfer system, and possible implementation of Tuning initiative. The Tuning Working Group particularly focused on the significance of improving the comparability of the university curriculum and subjects as well as the mobility of students and researchers. On the course of these activities, Furthermore, the Tuning Working Group conducted a "competence survey" from 2014 to 2015, for the first time in Japan, following Tuning Pilot Studies conducted in Europe and other parts of the world with advanced Tuning practices. The primary aim of the survey was to establish an interactive base for Japanese universities so that we could collaborate with world Tuning networks in the design of an internationally compatible curriculum.

The competence survey, which comprised questions to ask knowledge and skills that are expected to be developed through university education, was distributed among students, academics, graduates, and employers. The following specific areas were identified from the survey: 1) the composition of specific definitions for competences acquired from university education subject areas; 2) the similarities and differences between the perceptions of competence for each subject area from different stakeholders; 3) the fulfillment of the university's accountability and designing curricula that reflect the demands of the society and economy, curriculum improvement, and education content development; 4) the strength and characteristics of each university; 5) the improvement of each subject's compatibility and equivalency by referring to the common framework used by the tuning world network, which enabled the Tuning Working Group to compare the results with those of other regions; 6) the improvement of academic credibility of a joint degree or a dual degree by repeating the processes above.

Competence surveys are conducted by universities and academics as a voluntary initiative and do not intend to bring "normalization" and "standardization." The study aims to create opportunities for each university to recognize and enforce its characteristics and improve mobility and international competitiveness. The Tuning Working Group will develop Tuning with partner universities abroad. The Tuning Working Group aims to achieve a high-level curriculum adjustment, with the outcome being advertised domestically and internationally.

The Tuning Working Group received guidance and help from many people during the planning and implementation of the survey. We would like to thank the academics and staff from the participant universities who took their time to participate in the survey. Furthermore, we would like to thank the students, academics, graduates, and employers who responded to the survey. We hope that the results of this survey will be useful and informative for further enhancement of higher education in Japan.

2. Survey Outline

Period: 3 months from January 2015 to March 2015

Methods: Questionnaires

Subject areas: the six subject areas stated below were targeted.

- Natural Sciences: Four subject areas (Physics, Chemistry, Mechanical Engineering, Civil Engineering)
- Humanities: One subject area (History)
- Social Science: One subject area (Business)

Participants: The following groups of people from the participating universities (two to five universities for

each subject area)

- 1. Students
- 2. Academicss
- 3. Graduates
- 4. Private companies where graduates work (employers)

Profiles of the participating universities and participants are indicated in the following tables.

Tuble 1 Subject areas and participating university								
Subject areas	Participating universities							
Physics	University0, University1, University4, University6, University10							
Chemistry	University1, University4, University6							
Mechanical Engineering	University0, University1, University4, University6							
Civil Engineering	University1, University4, University6							
History	University1, University4, University7							
Business	University2, University7							

Table 1 Subject areas and participating university

The above universities are selected from the 12 member universities of the Tuning Working Group; Osaka University, Kyushu University, Kyoto University, Keio University, University of Tsukuba, The University of Tokyo, Tokyo Institute of Technology, Tohoku University, Nagoya University, Hitotsubashi University, Hokkaido University, and Waseda University.

Table 2 Participants

Participants	Profile
Students	3 rd and 4 th -year undergraduates, MA/Ph.D. students
Academics	Academics from participating universities
Graduates	Graduates within five years (graduate students who continued their study at the same
Graduates	university as their undergraduate study are categorized as students)
Employers	Private companies where graduates from the participating universities work

Overview of the questionnaire:

Two questionnaires focused on the following two competences were prepared.

- Generic Competences
- Subject-specific competences

Stakeholders and questionnaires:

- Students, academics, graduates: two questionnaires (one for generic comptences and one for subjectspecific competence)
- Employers: seven questionnaires (one for generic competences and six for subject-specific competences)

Questionnaire outline:

Table 3 indicates the number of questions in each questionnaire. History has 33 questions, which are ten questions more than that of the other subject areas.

Generic/	Subject-	Number of		
Specific		questions	Ranking	Comments
Generic		31	10	No
	Physics	23	10	Yes
	Chemistry	24	10	Yes
	Mechanical			
Subject-	Engineering	24	10	Yes
Specific	Civil			
I	Engineering	24	10	Yes
	History	33	10	Yes
	Business	24	10	Yes

 Table 3
 Number of questions in each subject area

Response rate :

49,576 questionnaires (Generic 22,083 and 6 Subject-specific 27,493 in total) were distributed among 22,083 people. We received 5,286 responses, a response rate of 10.66%. The following was the response rate for each group: students 18.02%, academics 23.74%, graduates 3.67%, employers 2.56%. Table 4 demonstratese the response rate (Table 4) and the response rate for each subject area (Table 5).

Table 4 Response Tale									
	Number of people	Number of questionnaires	Number of responses	Response rate					
Students	10,319	20,638	3,718	18.02%					
Academics	1,470	2,940	698	23.74%					
Graduates	9,212	18,424	676	3.67%					
Employers	1,082	7,574	194	2.56%					
Total	22,083	49,576	52,86	10.66%					

Table 4 Response rate

	Subjects Groups	Generic	Physics	Chemistry	Mech. Eng.	Civil Eng.	History	Business	Total
	Students	10,319	1,865	2,095	2,939	1,077	2,106	237	20638
Number of people	Academics	1,470	325	375	407	122	159	82	2940
of people	Graduates	9,212	1,799	1,099	3,579	262	2,058	415	18424
	Employers	1,082	1,082	1,082	1,082	1,082	1,082	1082	7574
	Total	22,083	5,071	4,651	8,007	2,543	5,405	1816	49576
	Subjects Groups	Generic	Physics	Chemistry	Mech. Eng.	Civil Eng.	History	Business	Total
Number	Students	1,859	504	331	601	191	153	79	3718
of	Academics	349	89	89	100	40	19	12	698
responses	Graduates	338	48	41	148	67	24	10	676
	Employers	41	24	28	24	24	22	31	194
	Total	2,587	665	489	873	322	218	132	5286
	Subjects Groups	Generic	Physics	Chemistry	Mech. Eng.	Civil Eng.	History	Business	Average
	Students	18.02%	27.02%	15.80%	20.45%	17.73%	7.26%	33.33 %	18.02%
Response rate	Academics	23.74%	27.38%	23.73%	24.57%	32.79%	11.95%	14.63 %	23.74%
	Graduates	3.67%	2.67%	3.73%	4.14%	25.57%	1.17%	2.41%	3.67%
	Employers	3.79%	2.22%	2.59%	2.22%	2.22%	2.03%	2.87%	2.56%
	Total	12.30%	14.82%	11.46%	12.84%	19.58%	5.60%	13.31 %	10.66%

Table 5Subject area • University Response rates

Valid Response :

The following criteria were used o determine a valid response.

- 1. Importance
 - Answered more than 50% of the questions \rightarrow valid
 - Answered less than 50% of the questions \rightarrow invalid

2. Ranking

- Answered top $5 \rightarrow$ valid
- Answered the consecutive numbers (1 to 10) as ranking \rightarrow invalid

We considered an answer invalid when it did not meet any criteria for either the generic competences or the subject-specific competences. The overall number of valid responses was 2674. Table 6 demonstrates the number of valid responses in each subject area at each university. Please note that in some parts there were no responses or very few responses.

		Specific	c	Generic			
Phys	Stu	Acad	Gra	Stu	Acad	Gra	
ics	den	emic	duat	den	emic	duat	
	ts	S	es	ts	S	es	
Univ							
.0	59	10	11	60	11	11	
Univ							
.1	70	30	40	70	28	40	
Univ							
.4	216	17	0	215	17	0	
Univ							
.6	17	5	0	17	5	0	
Univ							
.10	117	21	0	118	21	0	
Total	479	83	51	480	82	51	

Table 6 Number of valid response in each subject area

		Specific	2	Generic			
Civ	Stu	Acad	Gra	Stu	Acad	Gra	
il	den	emic	duat	den	emic	duat	
	ts	S	es	ts	S	es	
Uni							
v.1	34	12	23	37	14	26	
Uni							
v.4	98	9	0	86	9	0	
Uni							
v.6	50	14	39	52	12	39	
Tot	182	35	62	175	35	65	
al	182	35	62	1/5	35	65	

Che		Specific	2	Generic			
mistr y	Stu den ts	Acad emic s	Gra duat es	Stu den ts	Acad emic s	Gra duat es	
Univ .1	80	64	37	82	67	38	
Univ .4	237	13	0	217	12	0	
Univ .6	14	7	0	15	8	0	
Total	331	84	37	314	87	38	

		Specific	2	Generic			
Histo	Stu	Acad	Gra	Stu	Acad	Gra	
ry	den	emic	duat	den	emic	duat	
	ts	S	es	ts	S	es	
Univ							
.1	13	4	12	13	4	12	
Univ							
.4	35	5	0	37	5	0	
Univ							
.7	89	10	10	91	10	10	
Total	137	19	22	141	19	22	

Mec		Specific	2	Generic			
hanic	Stu	Acad	Gra	Stu	Acad	Gra	
al	den	emic	duat	den	emic	duat	
	ts	S	es	ts	S	es	
Univ							
.0	230	17	2	233	16	2	
Univ							
.1	111	49	85	113	49	88	
Univ							
.4	151	10	0	148	10	0	
Univ							
.6	65	15	47	67	14	52	
Total	557	91	134	561	89	142	

		Specific	2	Generic		
Busi ness	Stu den	Acad emic	Gra duat	Stu den	Acad emic	Gra duat
	ts	S	es	ts	S	es
Univ						
.2	21	9	0	22	8	0
Univ						
.7	56	3	10	56	3	10
Total	77	12	10	78	11	10

3. Methodology

The following methods were adopted: 1) Basic calculation and 2) Correlation comparison. The aim of the former was to identify the competences that each stakeholder considered significant, and the latter aimed to identify the degree of consensus on the significance of each competence among the different stakeholders.

1) General Analysis

Importance: Compare the average of each competence's importance

Ranking: Compare the weighted ranking index

2) Correlation comparison

Compare the correlation coefficients, which were based on the weighted ranking index between different stakeholders or different universities

The weighted ranking index

The weighted ranking index for each question was calculated using the following formula.

$$W = \frac{\#No.1 \times 10 + \#No.2 \times 9 + \#No.3 \times 8^{\bullet} \cdot \cdot + \#No.10 \times 1}{\sum [\#No.1 \times 10 + \#No.2 \times 9 + \#No.3 \times 8^{\bullet} \cdot \cdot + \#No.10 \times 1]}$$

The numerator (#No.1, #No.2, #No.3) represents the sum of the number of people who selected the competence as the first, second, and third, respectively, and the denominator represents the sum of all weighted competences.

Correlation comparison

The Pearson correlation coefficient was applied. Therefore, when the correlation coefficient is represented as "r". it means $|\mathbf{r}| \leq 1$ with correlations being stronger when r is close to 1.

4. Summary of the analysis results

In the following summary, the results of the general analysis of the subject-specific competences are discussed first, followed by a discussion of the correlation analysis. For the subject area analysis, we focus on physics. Then we analyze the generic competences and discuss the results. Finally, we examine the results and the challenges.

4.1 Subject-Specific competences

(1) General Analysis :

The average of the importance rate (Figure 1) showed that there was little difference among stakeholders

for the six competences (5. ethical awareness; 12. professional skills; 13. inter-disciplinary attitude/abilities; 21. specific communication skills; 15. managing skills; 23. teaching ability). However, employers tend to evaluate other competences to be lower than the other stakeholders. This tendency was observed in all the five subject areas except business.

For the weighted ranking index (physics) (Figure 2), 1. Ability to learn was highly evaluated. Some competences such as 17. Modeling skills and 21. Specific communication skills were differently evaluated by stakeholders. Ranking according to the weighted ranking index indicated that academics ranked 1. Ability to learn as second, and the others ranked competence as first. On the other hand, students, academics, and graduates ranked 17. Modeling skills either third or fourth, whereas employers ranked this competence as fourteenth.

Following are the results of inter-university comparison with each stakeholder (students, academics, graduates) for physics (Figure 3, Figure 4, Figure 5, respectively). First of all, the tendencies differed depending on the university. University 4's students ranked 4. Deep knowledge & understanding lower than the other universities, and University 6's students ranked 14. Literature search skills and 16. Mathematical skills higher than the others. A comparison of the result of the academics indicated the greater difference. For instance, University 6 ranked 1. Ability to learn, 6. Estimation skills, 7. Experimental skills highly whereas University 4 ranked 16. Mathematical skills and 17. Modeling skills highly. For graduates, there was the little difference when comparing the two universities.

(2) Comparison of correlation coefficient

For physics, the correlation comparison between stakeholders (Table 8) indicated that pairs that do not include employers, such as students and academics, had more than a 0.85 correlation coefficient. This was higher than the correlation coefficient in pairs that included employers. Figure 6 demonstrates the result of correlation by subject areas and Figure 7 shows the result of the correlation for University 1. The results of the correlation except for business and chemistry. (The correlation between employers and academics was 0.5 in physics and 0.3 in history.) Except for the student/graduate pairs, history had a low correlation in the different groups. The correlation between employers and academics by University (Figure 8) showed that the correlations differed greatly by subject areas although the universities also showed some differences. As shown in Figure 9, there was the little difference by the university in the student responses. As demonstrated in Figure 10, the academics indicated some differences, such as the difference in physics between University 4 and University 6.

4.2 Generic competences

(1) General Analysis:

The average rate of importance (Figure 11) showed that employers did not evaluate generic competences

lower than the others, unlike the subject-specific competences. However, employers regarded interpersonal skills such as 16. Ability to work in a team and 17. Interpersonal and interaction skills highly while they did not consider 8. Ability to undertake research at an appropriate level and 6. Ability to communicate in native language highly. In Figure 12, regarding the weighted ranking index of 20. Respect for diversity, academics and employers had a significant difference. While the academics evaluated 1. Ability for abstract thinking and 4. Knowledge of the subject highly, they did not rank interpersonal skills highly. In the ranking for each competence (Table 9), the academics ranked 4. Knowledge of the subject as second, but this was ranked 16th by employers. In contrast, 17. interpersonal skill was ranked 20th by academics, but employers ranked it first. There was no distinctive difference in the weighted approval rate from students (Figure 13), academics (Figure 14), and graduates (Figure 15) between the seven universities.

A comparison of the correlation among the different groups (Table 10) indicated a result smilar to the subject-specific competences. For instance, the correlation between the groups that excluded employers shows a higher correlation than the pairs that include employers. Correlations between the subject areas from all universities showed that pairs that included employers had lower correlations than the other pairs (Figure 16). The results for University 1 by subject area had a similar tendency compared to all the universities (Figure 17).

For the correlations between the different universities by subject area, the differences between the universities and subject areas were limited for students (Figure 19) and academics (Figure 20) because of the small number of responses.

5. Conclusion and future challenges

In this research, we analyzed people's perception of the importance of subject-specific competences and generic competences. From this research, the following conclusions were drawn.

1. Every group (students, academics, graduates, employers) evaluated learning ability highly. In physics, as pointed out, employers generally evaluate communication competency higher than the groups related to the university. However, all groups including employers answered that learning ability (1. Ability to learn) was the most important ability.

2. The recognition of what were important competences differed greatly between academics, students and employers.

Employers tended to evaluate subject-specific competences lower compared to university related groups. For example, in physics, employers evaluated all other competences lower than university related groups, except for six competences out of the 23, which included "communication skill" and "management ability." This tendency was observed in all five subject areas except business. However, this was not the case for the generic competences.

- In some subject areas, academics and employers measure important subject-specific competences differently. In four subject areas (Physics, Mechanical Engineering, Civil Engineering, and History), the correlation between employers and academics was the lowest of the four group pairs. The correlation was especially low in physics (0.5) and history (0.3).
- Academics and employers measure important generic competences differently. There was little disparity among the different subject areas and universities for the generic competences. However, different groups had different priorities. For instance, academics prioritized analysis, knowledge and creativity, whereas employers considered teamwork and interpersonal skills important.

3. Each university had distinctive priorities for the important competencies

In the result for the weighted ranking index in Physics, University 4 considered Mathematical skills and Modeling skills important while University 6 believed Estimation skills and Experimental skills important. Furthermore, students and academics from University 4 and University 6 answered differently from the other universities.

Future Challenges

The limitation of the survey was caused from the low response rates, as the response rates from employers and graduates were as low as below 5 per cent. This low response rate influenced a valid analysis result as the number of the people who answered gave limited elaborative analysis. Therefore, we need to reconsider the survey method. Further, our analysis focused on quantitative analysis, but in future analysis, we can interpret the distinctive tendency of each subject area through discussions with subject area experts.

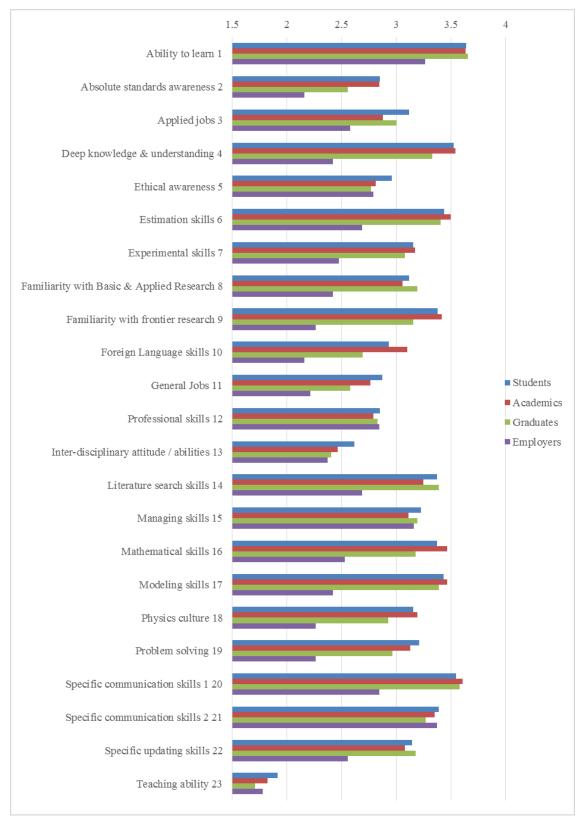


Figure 1 The average rate of importance; subject specific competences in physics

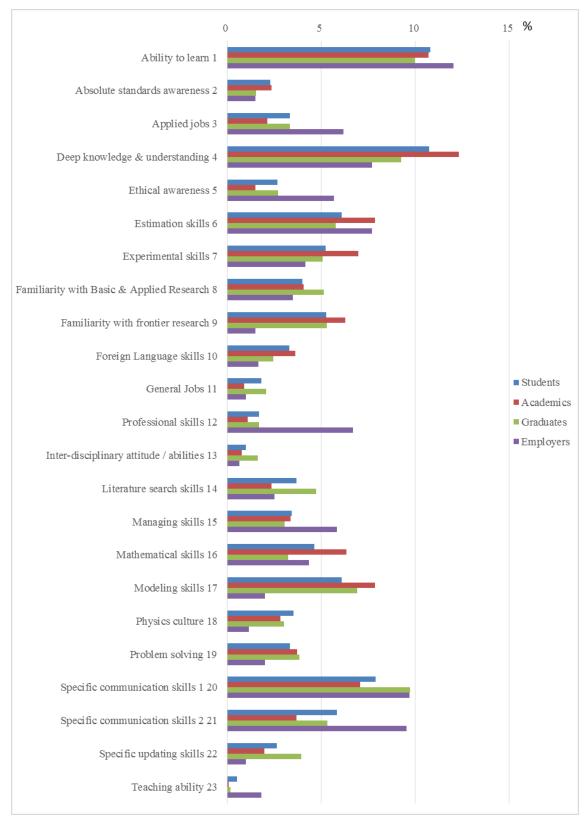


Figure 2 The ratio of the weighted ranking index; subject specific competences in physics

			-	-	
No.	Competence	Students	Academics	Graduates	Employers
1	Ability to learn 1	1	2	1	1
2	Absolute standards awareness 2	19	15	22	18
3	Applied jobs 3	14	17	13	7
4	Deep knowledge & understanding 4	2	1	3	4
5	Ethical awareness 5	17	19	17	9
6	Estimation skills 6	5	3	5	4
7	Experimental skills 7	8	6	9	11
8	Familiarity with Basic & Applied Research 8	10	9	8	12
9	Familiarity with frontier research 9	7	8	7	18
10	Foreign Language skills 10	16	12	18	17
11	General Jobs 11	20	21	19	21
12	Professional skills 12	21	20	20	6
13	Inter-disciplinary attitude / abilities 13	22	22	21	23
14	Literature search skills 14	11	16	10	13
15	Managing skills 15	13	13	15	8
16	Mathematical skills 16	9	7	14	10
17	Modeling skills 17	4	3	4	14
18	Physics culture 18	12	14	16	20
19	Problem solving 19	15	10	12	14
20	Specific communication skills 1 20	3	5	2	2
21	Specific communication skills 2 21	6	11	6	3
22	Specific updating skills 22	18	18	11	21
23	Teaching ability 23	23	23	23	16

Table 7 Ranking according to the weighted ranking index; subject-specific competences in physics

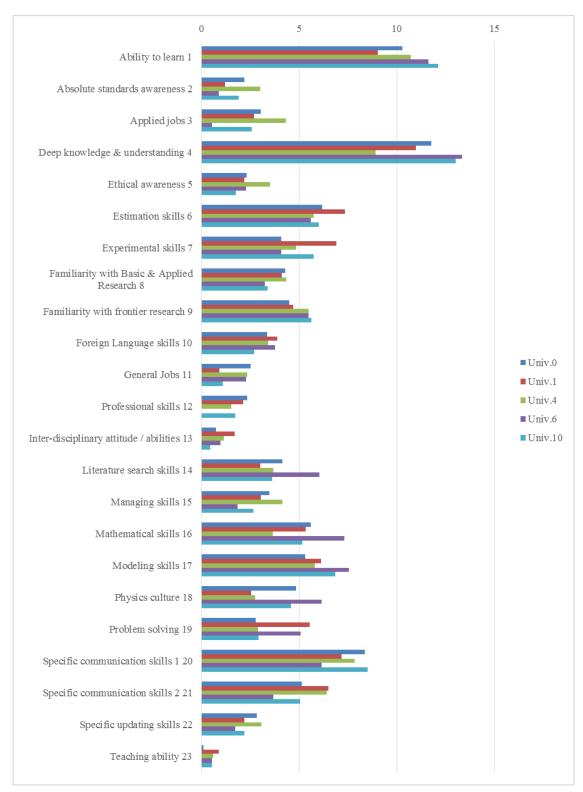
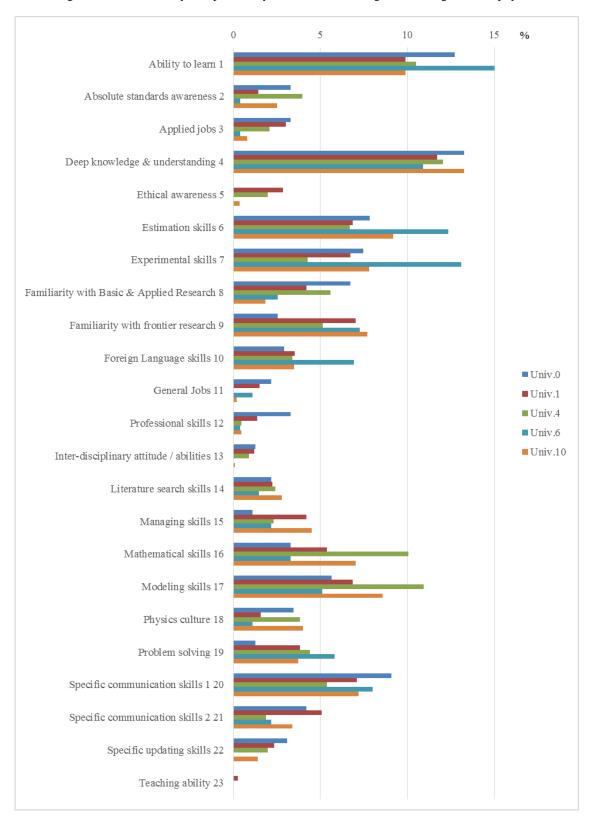



Figure 3 Inter-university comparison by students; the weighted ranking index in physics

Figure 4 Inter-university comparison by academics; the weighted ranking index in physics

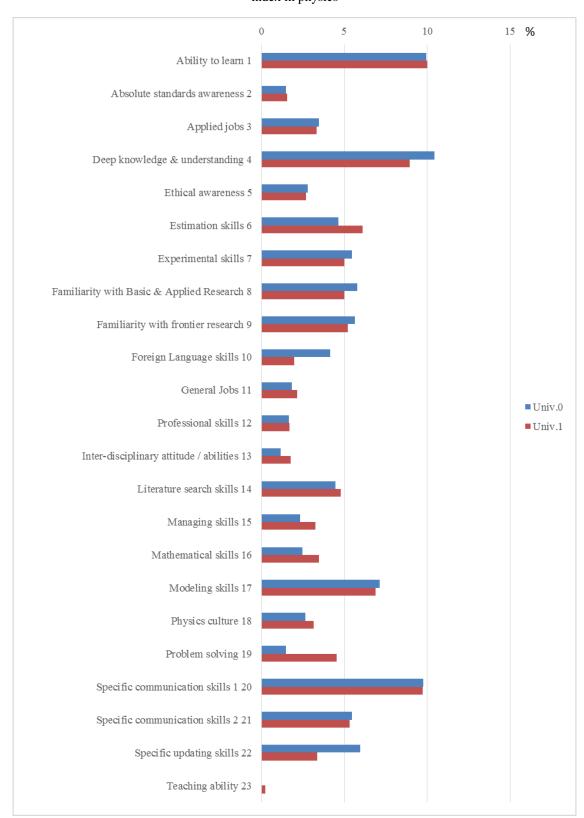


Figure 5 Inter-university comparison by graduates; subject-specific competences, the weighted ranking index in physics

	Students	Academics	Graduates	Employers
Students	1			
Academics	0.95	1		
Graduates	0.96	0.87	1	
Employers	0.70	0.54	0.64	1

Table 8 Comparison of correlation coefficients between stakeholders in physics

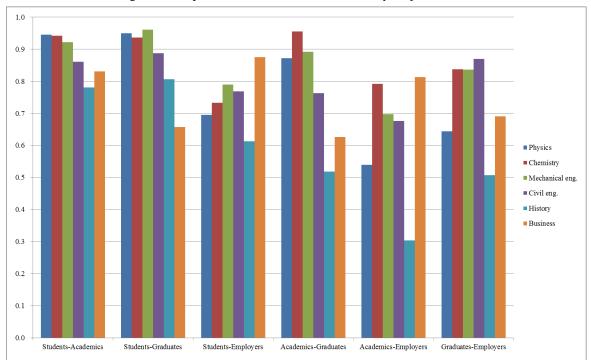


Figure 6 Comparison of correlation coefficients by subject areas

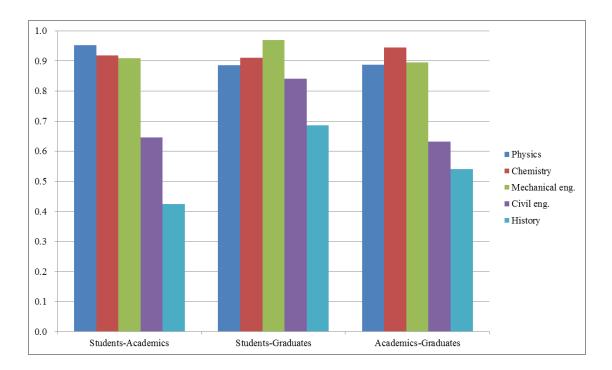
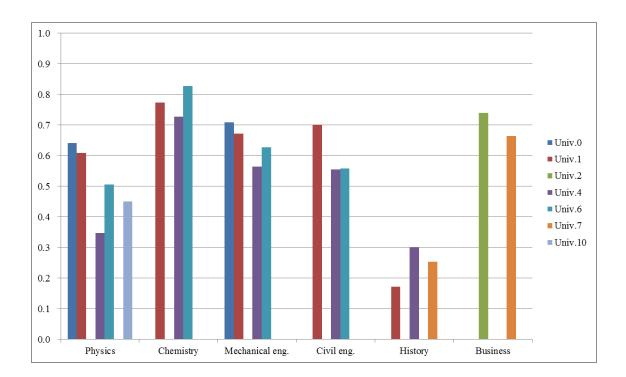



Figure 7 Comparison of correlation coefficients for Univ.1

Figure 8 Correlation coefficients between employers and academics

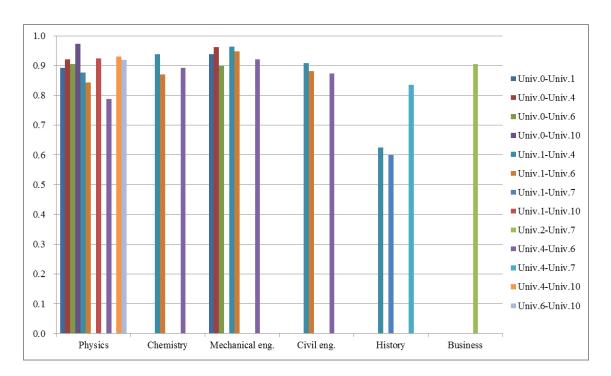
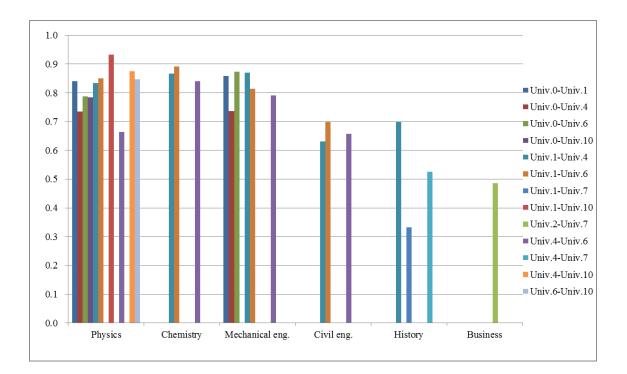



Figure 9 Inter-university comparison of correlation coefficients; students

Figure 10 Inter-university comparison of correlation coefficients; academics

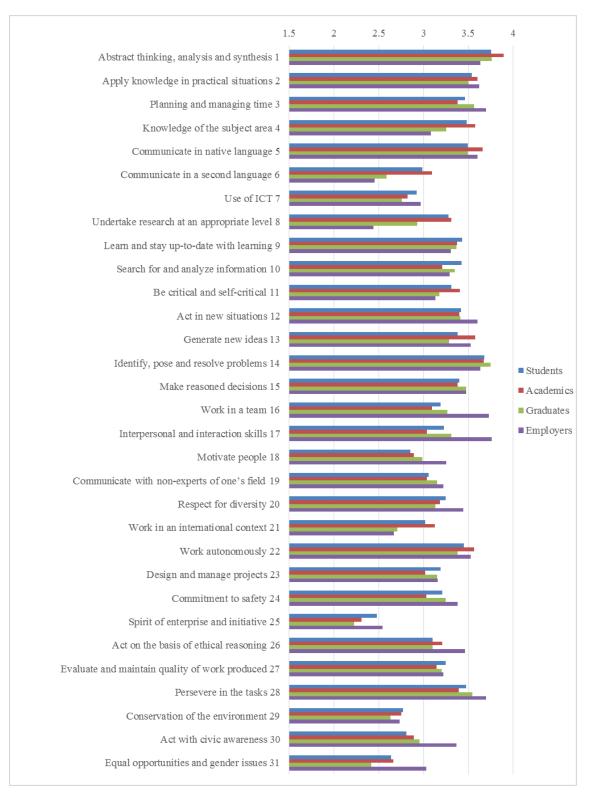


Figure 11 The average rate of importance; generic competences

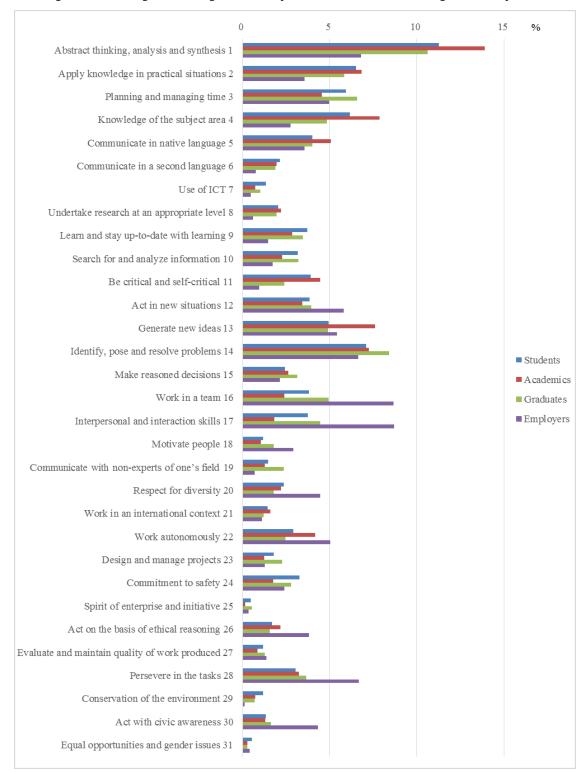


Figure 12 The weighted ranking index of importance in each stakeholder; generic competences

No.	Competence	Students	Academics	Graduates	Employers
1	Abstract thinking, analysis and synthesis 1	1	1	1	3
2	Apply knowledge in practical situations 2	3	5	4	13
3	Planning and managing time 3	5	7	3	9
4	Knowledge and understanding of the subject area 4	4	2	7	16
5	Communicate in native language 5	7	6	9	13
6	Communicate in a second language 6	19	19	21	25
7	Use of information and communication technologies 7	25	28	28	28
8	Undertake research at an appropriate level 8	20	16	20	27
9	Learn and stay up-to-date with learning 9	12	12	12	20
10	Search for and analyze information from a variety of	14	15	13	19
	sources 10				
11	Be critical and self-critical 11	8	8	17	24
12	Act in new situations 12	9	10	10	6
13	Generate new ideas 13	6	3	6	7
14	Identify, pose and resolve problems 14	2	4	2	5
15	Make reasoned decisions 15	17	13	14	18
16	Work in a team 16	10	14	5	2
17	Interpersonal and interaction skills 17	11	20	8	1
18	Motivate people and move toward common goals 18	29	26	22	15
19	Communicate with non-experts of one's field 19	23	24	18	26
20	Respect for diversity 20	18	17	23	10
21	Work in an international context 21	24	22	27	23
22	Work autonomously 22	16	9	16	8
23	Design and manage projects 23	21	25	19	22
24	Commitment to safety 24	13	21	15	17
25	Spirit of enterprise and initiative 25	31	31	30	30
26	Act on the basis of ethical reasoning 26	22	18	25	12
27	Evaluate and maintain quality of work produced 27	27	27	26	21
28	Persevere in the tasks 28	15	11	11	4
29	Commitment to the conservation of the environment 29	28	29	29	31
30	Act with civic awareness 30	26	23	24	11
31	Aware of equal opportunities and gender issues 31	30	30	31	29

Table 9 Ranking for each competence; generic competences

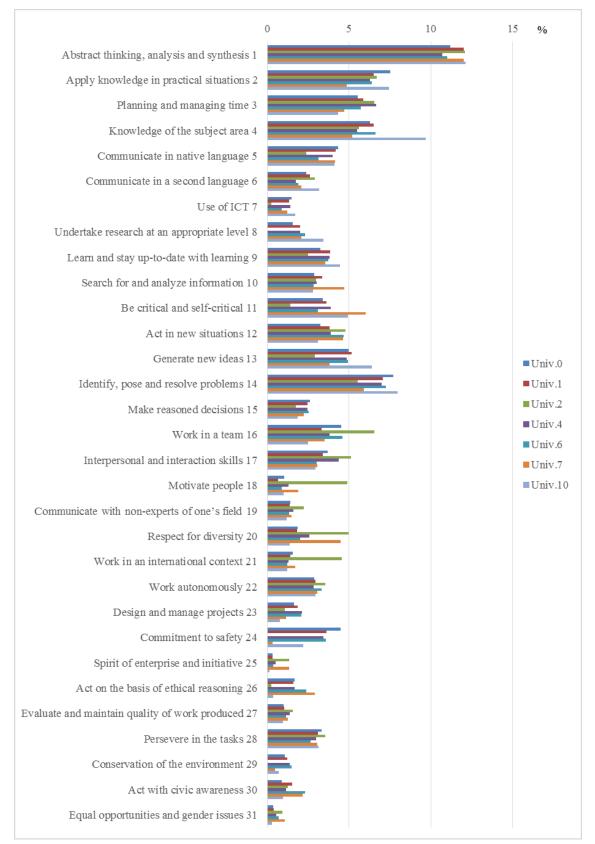


Figure 13 Inter-university comparison of the weighted ranking index; students

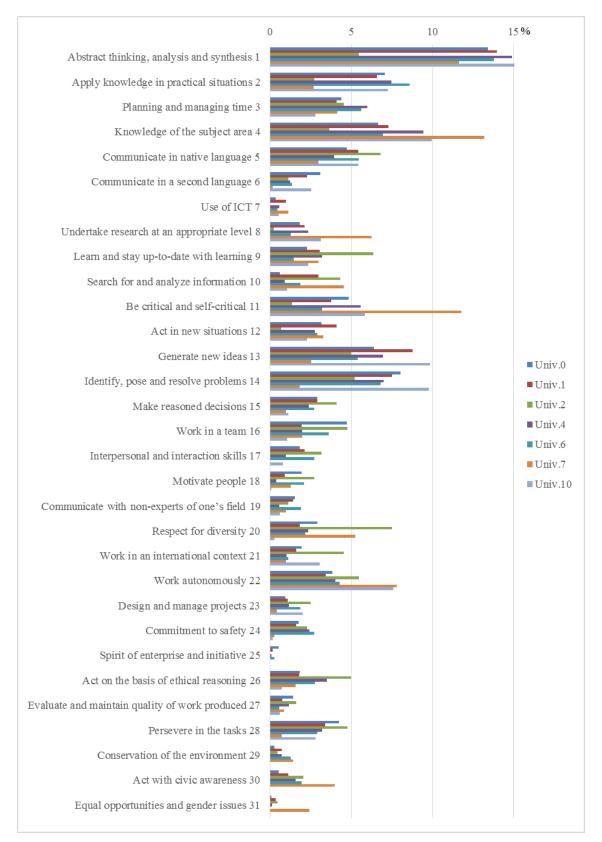


Figure 14 Inter-university comparison of the weighted ranking index; academics

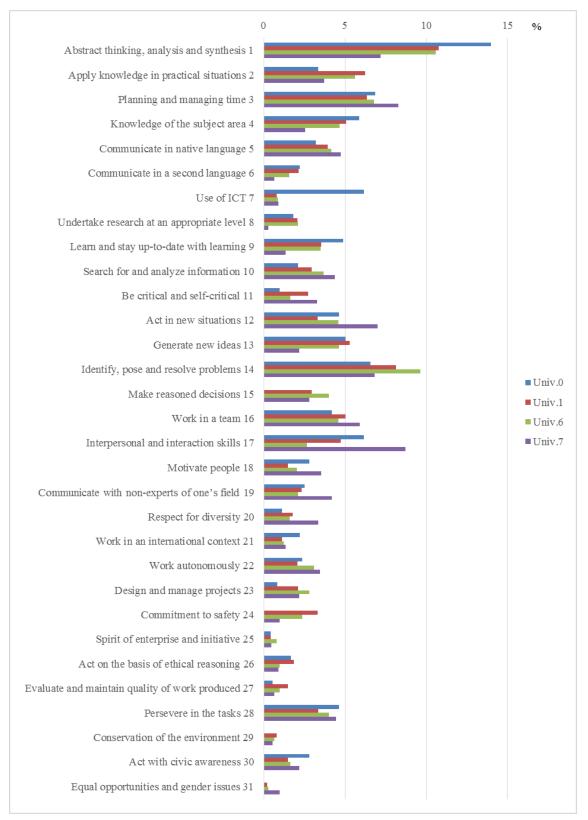


Figure 15 Inter-university comparison of the weighted ranking index; graduates

	Students	Academics	Graduates	Employers
Students	1			
Academics	0.95	1		
Graduates	0.96	0.87	1	
Employers	0.57	0.47	0.67	1

Table 10 Comparison of correlation coefficients between stakeholders

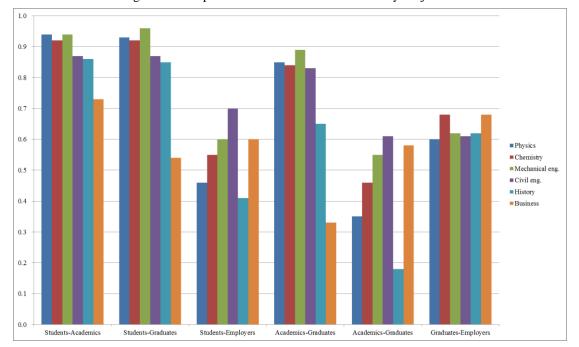


Figure 16 Comparison of correlation coefficients by subject areas

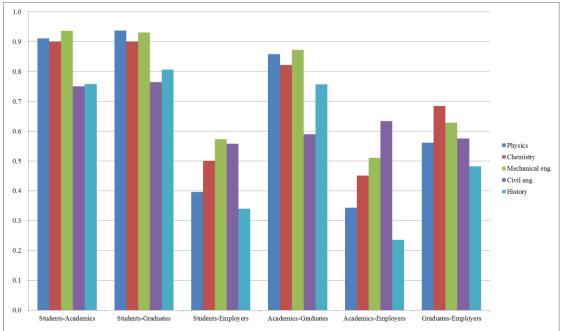


Figure 17 Comparison of correlation coefficients for Univ.1

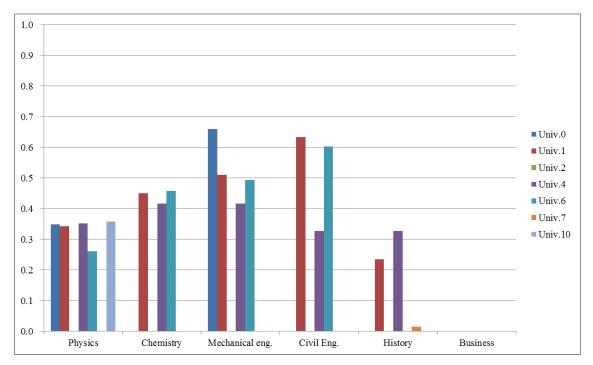
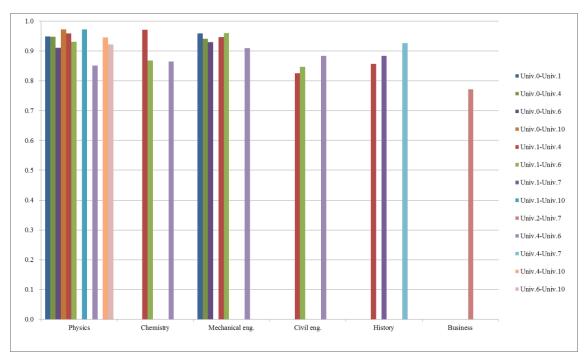



Figure 18 Correlation coefficients between employers and academics

Figure 19 Inter-university comparison of correlation coefficients; students

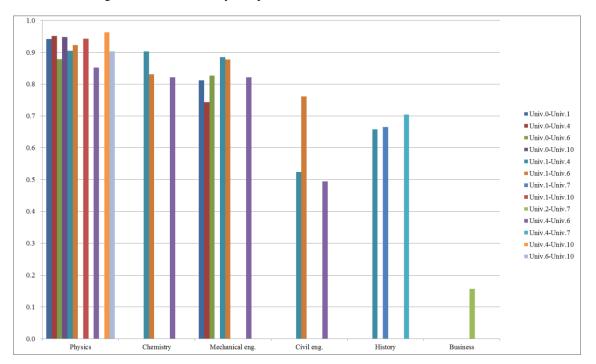
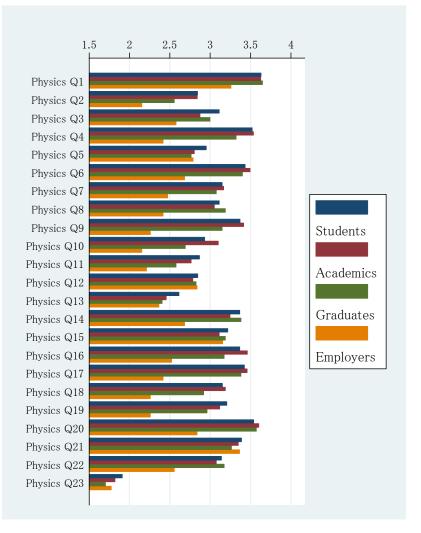


Figure 20 Inter-university comparison of correlation coefficients; academics


6. Figures and Tables

6.1 Analysis of Subject-specific competences

6.1.1 Participants

Whole Participants (physics)

Figure 21 The average rate of importance; subject-specific competences in physics (whole participants)

Q1 Ability to learn	Q9 Familiarity with frontier research	Q17 Modeling skills
Q2 Absolute standards awareness	Q10 Foreign Language skills	Q18 Physics culture
Q3 Applied jobs	Q11 General Jobs	Q19 Problem solving
Q4 Deep knowledge & understanding	Q12 Professional skills	Q20 Specific communication skills 1:
Q5 Ethical awareness	Q13 Inter-disciplinary attitude / abilities	Skills of presenting one's own research or literature search results
Q6 Experimental skills	Q14 Literature search skills	Q21 Specific communication skills 2: Skills of working in an interdisciplinary team
Q7 Experimental skills	Q15 Managing skills	Q22 Specific updating skills
Q8 Familiarity with Basic & Applied Research	Q16 Mathematical skills	Q23 Teaching ability

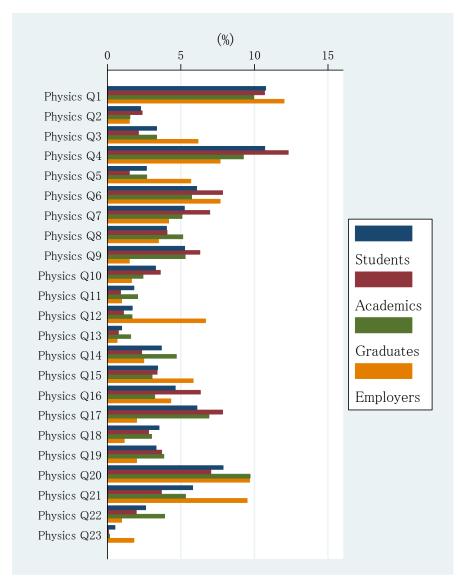
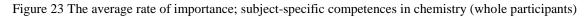
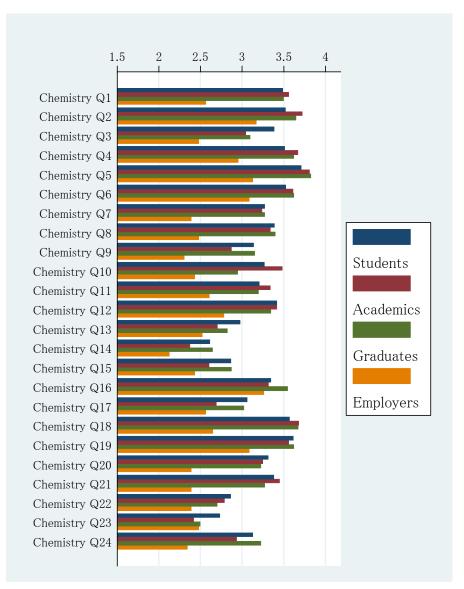


Figure 22 The ratio of the weighted ranking index; subject-specific competences in physics (whole participants)

Q1 Ability to learn	Q9 Familiarity with frontier research	Q17 Modeling skills
Q2 Absolute standards awareness	Q10 Foreign Language skills	Q18 Physics culture
Q3 Applied jobs	Q11 General Jobs	Q19 Problem solving
Q4 Deep knowledge & understanding	Q12 Professional skills	Q20 Specific communication skills 1:
Q5 Ethical awareness	Q13 Inter-disciplinary attitude / abilities	Skills of presenting one's own research or literature search results
Q6 Experimental skills	Q14 Literature search skills	Q21 Specific communication skills 2: Skills of working in an interdisciplinary team
Q7 Experimental skills	Q15 Managing skills	Q22 Specific updating skills
Q8 Familiarity with Basic & Applied Research	Q16 Mathematical skills	Q23 Teaching ability


No.	Competence	students	academics	graduates	employers
1	Ability to learn	1	2	1	1
2	Absolute standards awareness	19	15	22	18
3	Applied jobs	14	17	13	7
4	Deep knowledge & understanding	2	1	3	4
5	Ethical awareness	17	19	17	9
6	Estimation skills	5	3	5	4
7	Experimental skills	8	6	9	11
8	Familiarity with Basic & Applied Research	10	9	8	12
9	Familiarity with frontier research	7	8	7	18
10	Foreign Language skills	16	12	18	17
11	General Jobs	20	21	19	21
12	Professional skills	21	20	20	6
13	Inter-disciplinary attitude / abilities	22	22	21	23
14	Literature search skills	11	16	10	13
15	Managing skills	13	13	15	8
16	Mathematical skills	9	7	14	10
17	Modeling skills	4	3	4	14
18	Physics culture	12	14	16	20
19	Problem solving	15	10	12	14
20	Specific communication skills 1:	3	5	2	2
	Skills of presenting one's own research				
	or literature search results				
21	Specific communication skills 2: Skills	6	11	6	3
	of working in an interdisciplinary team				
22	Specific updating skills	18	18	11	21
23	Teaching ability	23	23	23	16


Table 11 Ranking according to the weighted ranking index; subject-specific competences in physics

	Students	Academics	Graduates	Employers
Students	1	0.95	0.95	0.70
Academics	0.95	1	0.87	0.54
Graduates	0.95	0.87	1	0.64
Employers	0.70	0.54	0.64	1

Table 12 Comparison of correlation coefficients between stakeholders in physics

Whole participants (chemistry)

Q1 Analysis of unfamiliar nature	Q9 Knowledge of main issues of Chemical research and development	Q17 Preprocessing skills using error analysis and estimation theory
Q2 The solution of qualitative and quantitative problems	Q10 Research and communication skills in English	Q18 Discussion skills
Q3 Ability to conduct risk assessments	Q11 Information skills	Q19 Ability to treat chemical substances safely
Q4 Ability to demonstrate knowledge and understanding	Q12 Ability to plan and design research investigations	Q20 Skills for conducting laboratory procedure
Q5 Ability to interpret data and relate them to appropriate theory	Q13 Data processing skills with the use of computer	Q21 Ability to implement experimental techniques
Q6 Ability to recognize and analyze novel problems and plans	Q14 Ability to teach Chemistry at secondary school	Q22 Ability to study and work at university and laboratory abroad
Q7 Ability to recognize and implement good measurement science	Q15 Computer skills for chemistry	Q23 Deep knowledge of mathematical and numerical methods
Q8 In-depth knowledge and understanding of an specific area of chemistry	Q16 Ability to plan project with a high degree of autonomy	Q24 Ability to develop professional technology for latest researching issues

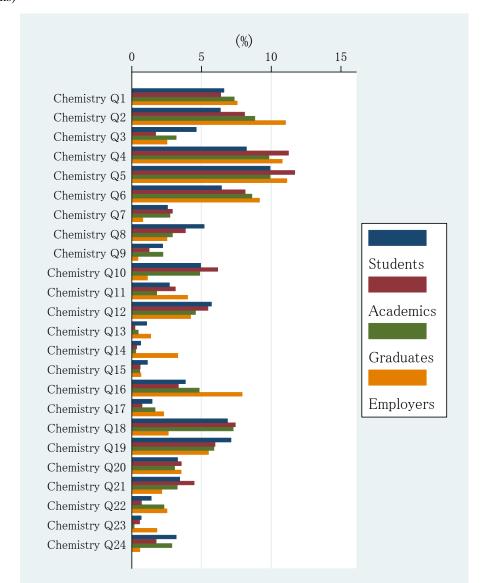
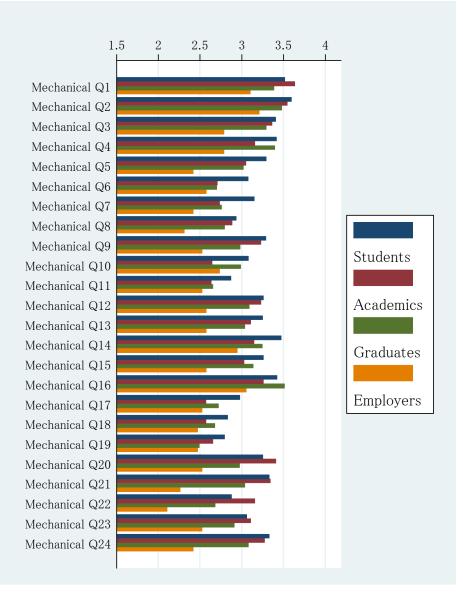


Figure 24 The ratio of the weighted ranking index; subject-specific competences in chemistry (whole participants)

Q1 Analysis of unfamiliar nature	Q9 Knowledge of main issues of Chemical research and development	Q17 Preprocessing skills using error analysis and estimation theory
Q2 The solution of qualitative and quantitative problems	Q10 Research and communication skills in English	Q18 Discussion skills
Q3 Ability to conduct risk assessments	Q11 Information skills	Q19 Ability to treat chemical substances safely
Q4 Ability to demonstrate knowledge and understanding	Q12 Ability to plan and design research investigations	Q20 Skills for conducting laboratory procedure
Q5 Ability to interpret data and relate them to appropriate theory	Q13 Data processing skills with the use of computer	Q21 Ability to implement experimental techniques
Q6 Ability to recognize and analyze novel problems and plans	Q14 Ability to teach Chemistry at secondary school	Q22 Ability to study and work at university and laboratory abroad
Q7 Ability to recognize and implement good measurement science	Q15 Computer skills for chemistry	Q23 Deep knowledge of mathematical and numerical methods
Q8 In-depth knowledge and understanding of an specific area of chemistry	Q16 Ability to plan project with a high degree of autonomy	Q24 Ability to develop professional technology for latest researching issues

No.	Competence	students	academics	graduates	employers
1	Apply chemical knowledge to analysis of	5	6	5	6
-	unfamiliar nature	C C	0	č	0
2	Apply chemical knowledge to the solution of	7	4	3	2
	qualitative and quantitative problems			-	_
3	Conduct risk assessments concerning the use of	11	17	12	13
	chemical substances and laboratory procedures				_
4	Demonstrate knowledge and understand of	2	2	2	3
	essential facts, concepts, principles and theories				_
	relating to chemistry				
5	Interpret data derived from laboratory	1	1	1	1
	observations and measurements in terms of their				
	significance and relate them to appropriate				
	theory				
6	Recognize and analyze novel problems and plans	6	3	4	4
	for their solution				
7	Recognize and implement good measurement	17	15	16	21
	science				
8	Acquire an in-depth knowledge and understand	9	11	14	13
	of an specific area				
9	Be familiar with major issues at the frontiers of	18	18	18	24
	research and development				
10	Read, write and present papers, and to	10	7	8	20
	communicate with other scientists in English				
11	Search for required information using chemistry	16	14	19	9
	and other technical literatures				
12	Implement the planning and design of research	8	9	10	8
	investigations				
13	Process observed data via computer	22	24	22	19
14	Compete for secondary school teaching positions	24	23	23	11
	in chemistry				
15	Apply latest computer and technology to	21	21	21	22
	chemistry				
16	Work with a high degree of autonomy in project	12	13	9	5
	planning				
17	Correct noisy data using error analysis and	19	19	20	16
	estimate				
18	Have scientific arguments with other researchers	4	5	6	12
19	Take into account their physical and chemical	3	8	7	7
	properties in order to handle safely chemical				
	materials				
20	Skills required for the conduct of laboratory	14	12	13	10
	procedures involved and use of instrumentation				
	in synthetic and analytical work, in relation to				
01	both organic and inorganic systems	10	10	11	17
21	Implement experimental techniques	13	10	11	17
22	Learn and work in foreign university and	20	20	17	13
	laboratory			~ ~ ~	10
23	Master mathematical and numerical methods	23	22	24	18
24	develop professional technology for latest	15	16	15	23
	researching issues				


Table 13 Ranking according to the weighted ranking index; subject-specific competences in chemistry

	Students	Academics	Graduates	Employers
Students	1	0.94	0.94	0.73
Academics	0.94	1	0.96	0.79
Graduates	0.94	0.96	1	0.84
Employers	0.73	0.79	0.84	1

Table 14 Comparison of correlation coefficients between stakeholders in chemistry

Whole participants (mechanical engineering)

Figure 25 The average rate of importance; subject-specific competences in mechanical engineering

Q1 Basic knowledge of mechanical engineering and its application	Q9 Capacity to model and assess mechanical engineering systems and processes	Q17 Quality control skill
Q2 Ability to identify the best technology for the situation	Q10 Skills in using material resources, tools and equipment cost-effectively	Q18 Capacity to conduct LCA
Q3 Skills to contribute to technological development	Q11 Capacity to consider legal, economic and financial aspects	Q19 Capacity to transform local natural resources into products or services
Q4 Skills to develop new mechanical products and systems	Q12 Spatial abstraction, graphic representation and engineering drawings	Q20 Ability to deal with unsolved problems
Q5 Ability to plan and manage mechanical engineering projects	Q13 Providing solutions for sustainable development	Q21 Ability to develop professional technology
Q6 Ability to manage mechanical engineering systems	Q14 Safety and risk management skill	Q22 Ability to study and work abroad at foreign university and laboratory
Q7 Ability to operate, maintain and repair mechanical engineering systems	Q15 Skills in using IT, software and tools	Q23 Skills for using mathematical methods and computing machine
Q8 Ability to evaluate the environmental and socio-economic impact of mechanical projects	Q16 Ability to communicate with multidisciplinary groups	Q24 Ability to develop technology for latest research

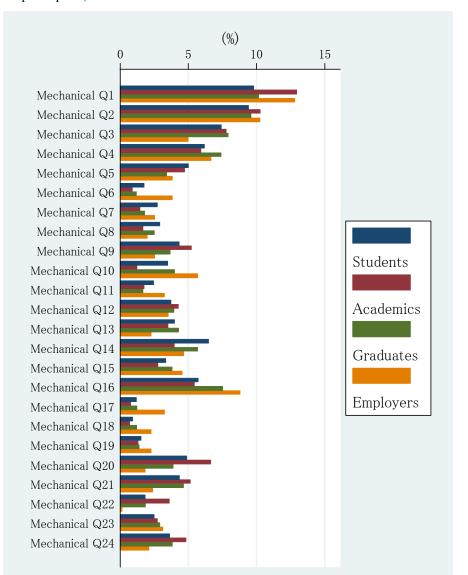
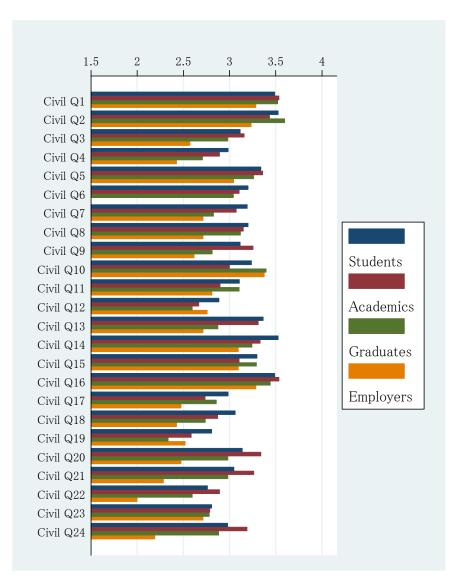


Figure 26 The ratio of the weighted ranking index; subject-specific competences in mechanical engineering (whole participants)

Q1 Basic knowledge of mechanical engineering and its application	Q9 Capacity to model and assess mechanical engineering systems and processes	Q17 Quality control skill
Q2 Ability to identify the best technology for the situation	Q10 Skills in using material resources, tools and equipment cost-effectively	Q18 Capacity to conduct LCA
Q3 Skills to contribute to technological development	Q11 Capacity to consider legal, economic and financial aspects	Q19 Capacity to transform local natural resources into products or services
Q4 Skills to develop new mechanical products and systems	Q12 Spatial abstraction, graphic representation and engineering drawings	Q20 Ability to deal with unsolved problems
Q5 Ability to plan and manage mechanical engineering projects	Q13 Providing solutions for sustainable development	Q21 Ability to develop professional technology
Q6 Ability to manage mechanical engineering systems	Q14 Safety and risk management skill	Q22 Ability to study and work abroad at foreign university and laboratory
Q7 Ability to operate, maintain and repair mechanical engineering systems	Q15 Skills in using IT, software and tools	Q23 Skills for using mathematical methods and computing machine
Q8 Ability to evaluate the environmental and socio-economic impact of mechanical projects	Q16 Ability to communicate with multidisciplinary groups	Q24 Ability to develop technology for latest research

No.	Competence	students	academics	graduates	employers
1	Apply knowledge of the basic and applied sciences	1	1	1	1
2	Identify and implement the most appropriate technologies	2	2	2	2
3	Create , innovate and contribute to technology	3	3	3	6
4	Conceive, analyze, design and experimentally produce	5	5	5	4
5	Plan and execute projects	7	10	15	9
6	Supervise, inspect and monitor systems	21	22	24	9
7	Operate, maintain and rehabilitate systems	17	19	19	15
8	Evaluate the environmental and socio- economic impact of systems	16	18	17	22
9	Model and simulate systems and processes	10	7	14	15
10	Select tools and equipment cost- effectively	14	21	9	5
11	Integrate legal, economic and financial aspects	19	17	20	12
12	Capacity for spatial abstraction	12	11	10	11
13	Provide mechanical engineering solutions	11	14	8	18
14	Skills in safety and risk management	4	12	6	7
15	Use information technologies	15	15	13	8
16	Interact with multidisciplinary groups	6	6	4	3
17	Quality control techniques	23	23	22	12
18	Conduct life cycle assessment	24	24	23	18
19	Transform local natural resources into products or services through value addition	22	20	21	18
20	Solve unsolved problems	8	4	11	23
21	Develop professional technology for latest researching issues	9	8	7	17
22	Be able to learn and work in foreign university and laboratory	20	13	18	24
23	Master mathematical and numerical methods	18	16	16	14
24	Develop professional technology for latest researching issues	13	9	12	21


Table 15 Ranking according to the weighted ranking index; subject-specific competences in mechanical engineering

TT 1 1 C C	1	. 1 1 1 11	
Table 16 Comparison of a	correlation coefficien	ts hetween stakeholder	s in mechanical engineering
rable to comparison of v		is between stakenoluer	, in meenamear engineering

	Students	Academics	Graduates	Employers
Students	1	0.92	0.96	0.79
Academics	0.92	1	0.89	0.70
Graduates	0.96	0.89	1	0.84
Employers	0.79	0.70	0.84	1

Whole participants (civil engineering)

Figure 27 The average rate of importance; subject-specific competences in civil engineering (whole participants)

Q1 Ability to apply knowledge of the basic sciences	Q9 Capacity to model and simulate civil engineering systems and processes	Q17 Quality control skill
Q2 Ability to identify the best technology for the situation	Q10 Capacity to direct and lead human resources	Q18 Capacity to conduct LCA
Q3 Skills to contribute to technological development	Q11 Skill in administering material resources, teams and equipment	Q19 Capacity to transform local natural resources into products or services
Q4 Capacity to conceive, analyze, calculate and design civil engineering works	Q12 Capacity for spatial abstraction, graphic representation and engineering drawings	Q20 Ability to deal with unsolved problems
Q5 Skill in planning and programming civil engineering works and services	Q13 Providing solutions for sustainable development	Q21 Ability to develop technology for latest research
Q6 Capacity to build, supervise, inspect and evaluate civil engineering works	Q14 Prevention of accidents	Q22 Ability to study and work abroad at foreign university and laboratory
Q7 Capacity to operate, maintain and repair civil engineering works	Q15 Skills in handling and interpreting	Q23 Skills for using mathematical methods and computing machine
Q8 Skill in evaluating the environmental and social impact of civil works	Q16 Ability to manage and interpret information from the work site	Q24 Ability to develop technology for latest research

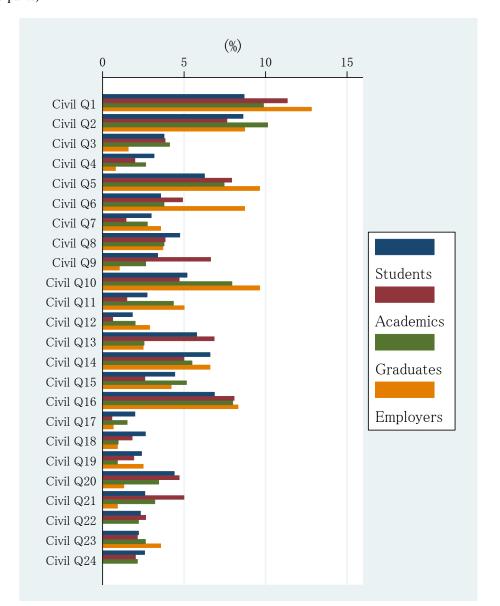
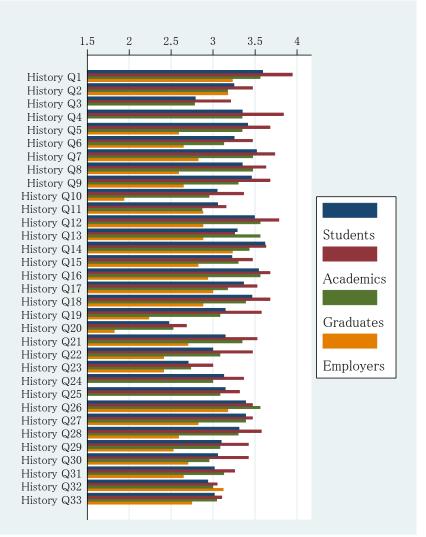


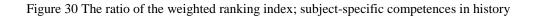
Figure 28 The ratio of the weighted ranking index; subject-specific competences in civil engineering (whole participants)

Q1 Ability to apply knowledge of the basic sciences	Q9 Capacity to model and simulate civil engineering systems and processes	Q17 Quality control skill
Q2 Ability to identify the best technology for the situation	Q10 Capacity to direct and lead human resources	Q18 Capacity to conduct LCA
Q3 Skills to contribute to technological development	Q11 Skill in administering material resources, teams and equipment	Q19 Capacity to transform local natural resources into products or services
Q4 Capacity to conceive, analyze, calculate and design civil engineering works	Q12 Capacity for spatial abstraction, graphic representation and engineering drawings	Q20 Ability to deal with unsolved problems
Q5 Skill in planning and programming civil engineering works and services	Q13 Providing solutions for sustainable development	Q21 Ability to develop technology for latest research
Q6 Capacity to build, supervise, inspect and evaluate civil engineering works	Q14 Prevention of accidents	Q22 Ability to study and work abroad at foreign university and laboratory
Q7 Capacity to operate, maintain and repair civil engineering works	Q15 Skills in handling and interpreting	Q23 Skills for using mathematical methods and computing machine
Q8 Skill in evaluating the environmental and social impact of civil works	Q16 Ability to manage and interpret information from the work site	Q24 Ability to develop technology for latest research

No.	Competence	students	academics	graduates	employers
1	Apply knowledge of the basic sciences	students 1	academics	graduates 2	employers 1
	and sciences	1	1	Z	1
2	Identify and implement the most	2	4	1	4
_	appropriate technologies	-		-	
3	Create, innovate and contribute to	11	12	9	16
	technological development				
4	Conceive, analyze, calculate and design	14	18	15	21
5	Plan and program civil engineering works	5	3	5	2
	and services				
6	Build, supervise, inspect and evaluate works	12	9	10	4
7	Operate, maintain and rehabilitate works	15	22	14	11
8	Evaluate the environmental and social	8	12	10	10
	impact of civil works				
9	Model and simulate systems and	13	6	15	18
	processes				
10	Direct and lead human resources	7	10	4	2
11	Administer material resources, teams and	16	21	8	8
12	equipment		22	01	10
12	Spatial abstraction, graphic representation and engineering drawings	24	23	21	13
13	Propose solutions that will contribute to	6	5	18	14
15	sustainable development	0	5	10	14
14	Prevent and evaluate accidents and risks	4	7	6	7
15	Handle and interpret field information	9	15	7	9
16	Interact with multidisciplinary groups	3	2	3	6
17	Employ quality control techniques	23	24	22	22
18	Conduct life cycle assessment for	17	20	23	19
	products and systems				
19	Employ skills to transform local natural	20	19	24	14
	resources into products or services				
	through value addition				
20	Solve unsolved problems	10	10	12	17
21	Develop professional technology for latest researching issues	18	7	13	19
22	Be able to learn and work in foreign university and laboratory	21	14	19	23
23	Master mathematical and numerical methods	22	16	17	11
24	Develop professional technology for	19	17	20	23
24	latest researching issues	19	17	20	23
L	Tatest researching issues				


Table 17 Ranking according to the weighted ranking index; subject-specific competences in civil engineering

	Students	Academics	Graduates	Employers
Students	1	0.86	0.89	0.77
Academics	0.86	1	0.76	0.68
Graduates	0.89	0.76	1	0.87
Employers	0.77	0.68	0.87	1


Table 18 Comparison of correlation coefficients between stakeholders in civil engineering

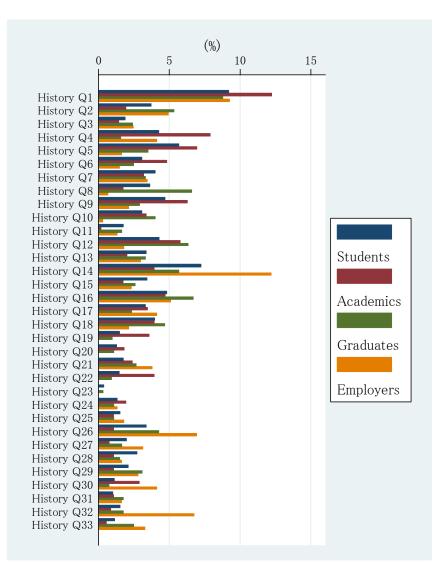

Whole participants (history)

Figure 29 The average rate of importance; subject-specific competences in hisory (whole participants)

Q1 Critical thinking	Q10 Ability to read historiographical texts in foreign languages	Q19 Knowledge of one or more specific periods of the human past	Q28 Knowledge of world history
Q2 Editing skill	Q11 Ability to use computer and internet resources and techniques	Q20 Knowledge of ancient languages	Q29 Understanding the social role of historian
Q3 Communication skill in foreign languages	Q12 Ability to write in one's own language	Q21 Knowledge and ability to use information retrieval tools	Q30 Ability to design, organize, and develop historical research projects
Q4 Communication skill in one's own language	Q13 Ability to use tools of humanities and social sciences	Q22 Knowledge and ability to use the specific tools	Q31 Ability to take part in interdisciplinary research work
Q5 Ability to define research topics	Q14 Respect for diversity	Q23 Knowledge of didactics of history	Q32 Ability to recognize, contribute to, and participate in socio-cultural
Q6 Ability to give narrative form to research results	Q15 Ability to link the methods and issues of different branches of historical research	Q24 Knowledge of Asian history	community activities
Q7 Ability to identify and utilize sources of information	Q16 Awareness of the differences in historical outlooks	Q25 Knowledge of the national or local history	Q33 Ability to apply historical education techniques and methods
Q8 Ability to organize complex historical information in coherent	Q17 Awareness of the issues and themes in historical debate	Q26 Knowledge of one's own national history	
Q9 Ability to read historiographical texts in one's own language	Q18 Awareness of the on-going nature of historical research and debate	Q27 Knowledge of the general diachronic framework of the past	

Q1 Critical thinking	Q10 Ability to read historiographical texts in foreign languages	Q19 Knowledge of one or more specific periods of the human past	Q28 Knowledge of world history
Q2 Editing skill	Q11 Ability to use computer and internet resources and techniques	Q20 Knowledge of ancient languages	Q29 Understanding the social role of historian
Q3 Communication skill in foreign languages	Q12 Ability to write in one's own language	Q21 Knowledge and ability to use information retrieval tools	Q30 Ability to design, organize, and develop historical research projects
Q4 Communication skill in one's own language	Q13 Ability to use tools of humanities and social sciences	Q22 Knowledge and ability to use the specific tools	Q31 Ability to take part in interdisciplinary research work
Q5 Ability to define research topics	Q14 Respect for diversity	Q23 Knowledge of didactics of history	Q32 Ability to recognize, contribute to, and participate in socio-cultural
Q6 Ability to give narrative form to research results	Q15 Ability to link the methods and issues of different branches of historical research	Q24 Knowledge of Asian history	community activities
Q7 Ability to identify and utilize sources of information	Q16 Awareness of the differences in historical outlooks	Q25 Knowledge of the national or local history	Q33 Ability to apply historical education techniques and methods
Q8 Ability to organize complex historical information in coherent form	Q17 Awareness of the issues and themes in historical debate	Q26 Knowledge of one's own national history	
Q9 Ability to read historiographical texts in one's own language	Q18 Awareness of the on-going nature of historical research and debate	Q27 Knowledge of the general diachronic framework of the past	

No.	Competence	students	academics	graduates	employers
1	Think critical about the relationship between current events and the past.	1	1	1	2
2	Comment, annotate or edit texts and documents correctly	10	18	6	6
3	Communicate orally in foreign languages	21	23	19	16
4	Communicate orally in one's own language	7	2	25	7
5	Define research topics that contribute to the development of history	3	3	10	22
6	Give narrative form to research results	16	6	17	25
7	Identify and utilize appropriately sources of information	8	14	11	11
8	Organize complex historical information in coherent form	11	21	3	28
9	Read historiographical texts or original documents in one's own language	5	4	14	18
10	Read historical texts or original documents in other languages	16	13	9	29
11	Use computer and internet resources and techniques	22	32	23	26
12	Write in one's own language using correctly the various types of historical writing.	6	5	4	20
13	Use tools of human and social sciences	13	17	11	14
14	Recognize and respect for diversity in cultural background	2	8	5	1
15	Link the methods and issues of different branches	12	21	16	17
16	Awareness of the differences in historical outlooks	4	7	2	5
17	Awareness of the issues and themes of present day	15	12	20	7
18	Awareness of the on-going nature of historical research and debate	9	8	7	18
19	Detailed knowledge of one or more specific periods of the human past	26	11	30	30
20	Knowledge of ancient languages	29	20	27	30
21	Use information retrieval tools	22	16	15	10
22	Use the specific tools	27	8	31	30
23	Knowledge of didactics of history	33	33	33	30
24	Knowledge of Asian history	28	18	27	26
25	Knowledge of the national or local history	24	24	27	20
26	Knowledge of one's own national history	14	24	8	3
27	Knowledge of the general diachronic framework of the past	20	30	23	13
28	Knowledge of world history	18	24	26	22
29	Understand the social role of the historian	19	24	13	15
30	Design, organize, and develop historical research projects.	31	15	32	7
31	Take part in interdisciplinary research work	32	24	21	22
32	Recognize, contribute to, and participate in socio- cultural community activities	24	29	21	4
33	Apply historical education techniques and methods	30	31	17	12

Table 19 Ranking according to the weighted ranking index; subject-specific competences in history

	Students	Academics	Graduates	Employers
Students	1	0.78	0.81	0.61
Academics	0.78	1	0.52	0.30
Graduates	0.81	0.52	1	0.51
Employers	0.61	0.30	0.51	1

Table 20 Comparison of correlation coefficients between stakeholders in history

Whole participants (business)

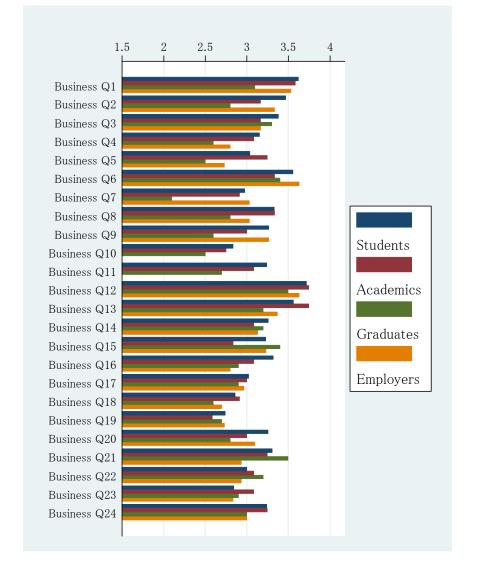


Figure 31 The average rate of importance; subject-specific competences in business (whole participants)

Q1 Planning skill	Q9 Interpreting accounting and financial information	Q17 Using IT and communication technology
Q2 Identifying and administering business risks	Q10 Using costing information	Q18 Managing the technological infrastructure
Q3 Identifying and optimizing business processes	Q11 Taking decisions regarding investments, financing and management of financial resources	Q19 Formulating and optimizing information systems
Q4 Administrating an integral logistic system	Q12 Leadership skills	Q20 Formulating market plans
Q5 Developing business control systems	Q13 Managing and developing human talent	Q21 Communication skill in English
Q6 Identifying functional interrelations within organizations	Q14 Identifying ethical and cultural aspects of reciprocal impact	Q22 Understanding Japanese business manner
Q7 Evaluating the legal framework applied to business control systems	Q15 Improving and innovating administrative processes	Q23 Understanding Japanese economic structures and their history
Q8 Producing, evaluating and managing business projects	Q16 Undertaking new business and/or developing new products	Q24 Ability to understand other Asian countries' society and economical structures

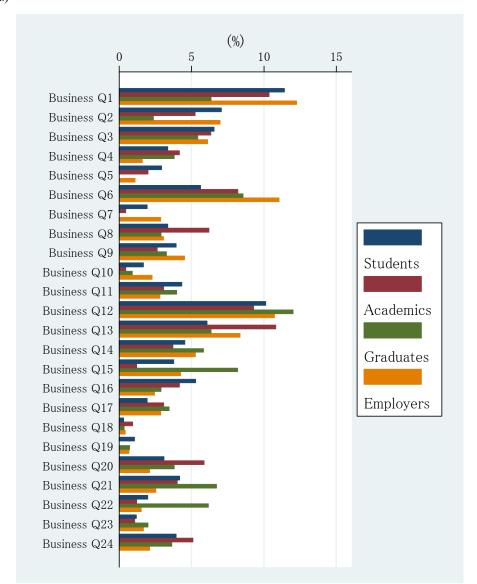


Figure 32 The ratio of the weighted ranking index; subject-specific competences in business (whole participants)

Q1 Planning skill	Q9 Interpreting accounting and financial information	Q17 Using IT and communication technology
Q2 Identifying and administering business risks	Q10 Using costing information	Q18 Managing the technological infrastructure
Q3 Identifying and optimizing business processes	Q11 Taking decisions regarding investments, financing and management of financial resources	Q19 Formulating and optimizing information systems
Q4 Administrating an integral logistic system	Q12 Leadership skills	Q20 Formulating market plans
Q5 Developing business control systems	Q13 Managing and developing human talent	Q21 Communication skill in English
Q6 Identifying functional interrelations within organizations	Q14 Identifying ethical and cultural aspects of reciprocal impact	Q22 Understanding Japanese business manner
Q7 Evaluating the legal framework applied to business control systems	Q15 Improving and innovating administrative processes	Q23 Understanding Japanese economic structures and their history
Q8 Producing, evaluating and managing business projects	Q16 Undertaking new business and/or developing new products	Q24 Ability to understand other Asian countries' society and economical structures

No.	Competence	students	academic s	graduates	employer s
1	Develop strategic, tactical and operational planning skills	1	2	5	1
2	Identify and administer business risks in organizations	3	8	18	5
3	Identify and optimize business processes within organizations	4	5	9	6
4	Administrate an integral logistic system	14	10	11	20
5	Develop, implement, and manage business control systems	17	17	23	22
6	Identify functional inter relations within organizations	6	4	2	2
7	Evaluate the legal framework applied to business control systems	19	22	23	11
8	Produce, evaluate and managing business projects within different types of organizations	14	6	16	10
9	Interpret accounting and financial information	11	16	15	8
10	Use costing information	21	22	20	16
11	Take decisions regarding investments, financing and management of financial resources	9	14	10	13
12	Leadership skills, for the achievement of and following up of aims	2	3	1	3
13	Manage and develop human talent	5	1	5	4
14	Identify ethical and cultural aspects of reciprocal impact	8	13	8	7
15	Improve and innovating administrative processes	13	18	3	9
16	Detect opportunities for undertaking new business and or developing new products	7	10	16	15
17	Use information and communication technology in management	19	14	14	11
18	Manage the technological infrastructure of a business	24	21	22	24
19	Formulate and optimize information systems	23	24	21	23
20	Formulate market plans	16	7	11	17
21	English skills	10	12	4	14
22	Understand business manners particularly used in Japan	18	18	7	21
23	Understand Japanese economic structures and their history	22	20	19	19
24	Understand other Asian countries' society and build relation to those countries	11	9	13	17

Table 21 Ranking according to the weighted ranking index; subject-specific competences in business

	Students	Academics	Graduates	Employers
Students	1	0.83	0.66	0.87
Academics	0.83	1	0.63	0.81
Graduates	0.66	0.63	1	0.69
Employers	0.87	0.81	0.69	1

Table 22 Comparison of correlation coefficients between stakeholders in business

7. Appendix : Questionnaire

- (1) [General competence questionnaire: students, academic, employers]
- (2) [General competence questionnaire: graduates]
- (3) [Physics competence questionnaire: students, academic, employers, graduates]
- (4) [Chemistry competence questionnaire: students, academic, employers, graduates]
- (5) [Mechanical engineering competence questionnaire: students, academic, employers, graduates]
- (6) [Civil engineering competence questionnaire: students, academic, employers, graduates]
- (7) [History competence questionnaire: students, academic, employers, graduates]
- (8) [Business competence questionnaire: students, academic, employers, graduates]

* *	*
-----	---

[General competence questionnaire: students, academics, employers]

Competence Survey on Globally-Required Abilities

Listed below are *generic competences* important for the professional development of university graduates. For each of the competences, please estimate the importance for work in your profession.

		I	Impo	rtance	e
	For each competence, circle one number for its importance				ong
1	Ability for abstract thinking, analysis and synthesis.	1	2	3	4
2	Ability to apply knowledge in practical situations.	1	2	3	4
3	Ability to plan and manage time.	1	2	3	4
4	Knowledge and understanding of the subject area and understanding of the	1	2	3	4
	profession.				
5	Ability to communicate both orally and through the written word in native language.	1	2	3	4
6	Ability to communicate in a second language.	1	2	3	4
7	Skills in the use of information and communication technologies.	1	2	3	4
8	Ability to undertake research at an appropriate level.	1	2	3	4
9	Capacity to learn and stay up-to-date with learning.	1	2	3	4
10	Ability to search for, process and analyze information from a variety of sources.	1	2	3	4
11	Ability to be critical and self-critical.	1	2	3	4
12	Ability to adapt to and act in new situations.	1	2	3	4
13	Capacity to generate new ideas (creativity).	1	2	3	4
14	Ability to identify, pose and resolve problems.	1	2	3	4
15	Ability to make reasoned decisions.	1	2	3	4
16	Ability to work in a team.	1	2	3	4
17	Interpersonal and interaction skills.	1	2	3	4
18	Ability to motivate people and move toward common goals.	1	2	3	4
19	Ability to communicate with non-experts of one's field.	1	2	3	4
20	Appreciation and respect for diversity.	1	2	3	4
21	Ability to work in an international context.	1	2	3	4
22	Ability to work autonomously.	1	2	3	4

Generic Competence

23	Ability to design and manage projects.	1	2	3	4
24	Commitment to safety.	1	2	3	4
25	Spirit of enterprise, ability to take initiative.	1	2	3	4
26	Ability to act on the basis of ethical reasoning.	1	2	3	4
27	Ability to evaluate and maintain quality of work produced.	1	2	3	4
28	Determination and perseverance in the tasks given and responsibilities taken.	1	2	3	4
29	Commitment to the conservation of the environment.	1	2	3	4
30	Ability to act with social responsibility and civic awareness.	1	2	3	4
31	Ability to show awareness of equal opportunities and gender issues.	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Many thanks for your cooperation.

* *	*
-----	---

[General competence questionnaire: graduates]

Competence Survey on Globally-Required Abilities

This questionnaire presents a series of questions related to the *skills* and *competences* that may be important for success in your career. Please answer about yourself and your degree first.

1.	Year of graduation :			
2.	Sex :	\bigcirc	Male	
		2	Female	
3.	Final degree acquired			_

4. Area of specialization/Major_____

5.	Your degree and present employment situation) :					
	\bigcirc	Working in a position related to your degree				
	2	Working in a position not related to your degree				
	3	Continuing your study				
	4	Looking for your job				
	(5)	Other				
		Please specify :				

6.	Hov	would you rate the employment potential of your degree?	
		Very good	
	2	Good	
	3	Fair	
	4	Poor	
	5	Very poor	

7. Do you feel that the education you have received at the university has been adequate?

\bigcirc	Very much	
2	Much	

3	Some	
4	Little	
5	Very little	

Following shows *generic competences* useful for any professions. For each of the competences, please estimate the importance for work in your profession.

Generic Competence						
For each competence, circle one number for its importance	Importance					
	Weak \rightarrow Strong					
1 Ability for abstract thinking, analysis and synthesis.	1 2 3 4					
2 Ability to apply knowledge in practical situations.	1 2 3 4					
3 Ability to plan and manage time.	1 2 3 4					
4 Knowledge and understanding of the subject area and understanding of the profession.	1 2 3 4					
5 Ability to communicate both orally and through the written word in native language.	1 2 3 4					
6 Ability to communicate in a second language.	1 2 3 4					
7 Skills in the use of information and communication technologies.	1 2 3 4					
8 Ability to undertake research at an appropriate level.	1 2 3 4					
9 Capacity to learn and stay up-to-date with learning.	1 2 3 4					
10 Ability to search for, process and analyze information from a variety of sources.	1 2 3 4					
11 Ability to be critical and self-critical.	1 2 3 4					
12 Ability to adapt to and act in new situations.	1 2 3 4					
13 Capacity to generate new ideas (creativity).	1 2 3 4					
14 Ability to identify, pose and resolve problems.	1 2 3 4					
15 Ability to make reasoned decisions.	1 2 3 4					
16 Ability to work in a team.	1 2 3 4					
17 Interpersonal and interaction skills.	1 2 3 4					
18 Ability to motivate people and move toward common goals.	1 2 3 4					
19 Ability to communicate with non-experts of one's field.	1 2 3 4					
20 Appreciation and respect for diversity.	1 2 3 4					
21 Ability to work in an international context.	1 2 3 4					
22 Ability to work autonomously.	1 2 3 4					
23 Ability to design and manage projects.	1 2 3 4					
24 Commitment to safety.	1 2 3 4					

Generic Competence

25	Spirit of enterprise, ability to take initiative.	1	2	3	4
26	Ability to act on the basis of ethical reasoning.	1	2	3	4
27	Ability to evaluate and maintain quality of work produced.	1	2	3	4
28	Determination and perseverance in the tasks given and responsibilities taken.	1	2	3	4
29	Commitment to the conservation of the environment.	1	2	3	4
30	Ability to act with social responsibility and civic awareness.	1	2	3	4
31	Ability to show awareness of equal opportunities and gender issues.	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Many thanks for your cooperation.

*	*	*
---	---	---

[Physics competence questionnaire: students, academic, employers, graduates]

Competence Survey on Globally-Required Abilities

Physics

Listed below are competences in the area of physics important for the professional development of university graduates. For each of the competences, please estimate the importance for work in physics.

For each competence, circle one number for its importance			Importance			
				ong		
1. Ability to learn	1	2	3	4		
Be able to enter new fields through independent study.						
2. Absolute standards awareness	1	2	3	4		
Have become familiar with "the work of genius", i.e. with the variety and delight of physical discoveries and theories, thus developing an awareness of the highest standards.						
3. Applied jobs (lower level positions)	1	2	3	4		
Be able to carry out professional activities in the frame of applied technologies.						
4. Deep knowledge & understanding	1	2	3	4		
Have a good understanding of the most important physical theories (logical and mathematical structure, experimental support, described physical phenomena), including a deep knowledge of the foundations of modern physics, say quantum theory, etc.						
5. Ethical awareness (relevant to physics)	1	2	3	4		
Be able to understand the socially related problems that confront the profession and to comprehend the ethical characteristics of research and of the professional activity in physics and its responsibility to protect public health and the environment.						
6. Estimation skills	1	2	3	4		
Be able to evaluate clearly the orders of magnitude in situations which are physically different, but show analogies, thus allowing the use of known solutions in new problems; be able to appreciate the significance of the results.						
7. Experimental skills	1	2	3	4		
Be able to perform experiments independently, as well as to describe, analyze and critically evaluate experimental data and have become familiar with most important experimental methods.						
8. Familiarity with Basic & Applied Research	1	2	3	4		
Have acquired an understanding of the nature and ways of physics research and of how physics research is applicable to many fields other than physics, e.g. engineering.						
9. Familiarity with frontier research	1	2	3	4		
Have a good knowledge of the state of the art in - at least - one of the presently active physics specialties.						
10. Foreign Language skills	1	2	3	4		
Have improved command of foreign languages through participation in courses taught in foreign language: i.e. study abroad via mobility/exchange programmes, and recognition of credits at foreign universities or research centres.						

	4	2	2	4
11. General Jobs (high level positions) Be able to carry out the following activities: promoting and developing scientific and	1	2	3	4
technological innovation; planning and management of technologies related to physics; high level popularisation of scientific culture issues.				
12. Professional skills	1	2	3	4
Be able to gain professional flexibility through the wide spectrum of scientific techniques offered in the curriculum.				
13. Inter-disciplinary attitude / abilities	1	2	3	4
Acquire additional qualifications for career, through optional units other than physics.	<u> </u>			
14. Literature search skills	1	2	3	4
Be able to search for and use physical and other technical literature, as well as any other sources of information relevant to research work and technical project development. Good knowledge of technical English as well as on-line computer searching skills are required too.				
15. Managing skills	1	2	3	4
Be able to work with a high degree of autonomy, even accepting responsibilities in project planning and in the managing of structures.				
16. Mathematical skills	1	2	3	4
Be able to understand and master the use of the most commonly used mathematical and numerical methods.				
17. Modeling skills	1	2	3	4
(a) be able to identify the essentials of a process / situation and to set up a working model of				
the same; (b) be able to perform the required approximations; i.e. critical thinking to construct physical				
models (c) be able to adapt available models to new experimental data				
18. Physics culture	1	2	3	4
Be familiar with the most important areas of physics and with those approaches, which span many areas in physics.				
19. Problem solving	1	2	3	4
Be able to perform calculations independently, even when a small PC or a large computer is needed,				
including capacity to utilize or develop computation systems or programmes for information				
processing, numerical calculus, simulation of physical processes.				
20. Specific communication skills 1	1	2	3	4
Be able to present one's own research or literature search results to professional as well as to lay				
audiences (orally and in written form to describe complex phenomena/problems in everyday				
language, as appropriate to the audience).				
	1	n	2	4
21. Specific communication skills 2	1	2	3	4
Be able to work in an interdisciplinary team.				
22. Specific updating skills	1	2	3	4
Enjoy facility to remain informed of new developments and methods and be able to provide				
professional advice on their possible range of applications.				

23. Teaching ability	1	2	3	4
Be prepared to compete for secondary school teaching positions in physics.				

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment

*	*	*
---	---	---

[Chemistry competence questionnaire: students, academic, employers, graduates] Competence Survey on Globally-Required Abilities

Chemistry

Listed below are competences in the area of chemistry important for the professional development of university graduates. For each of the competences, please estimate the importance for work in chemistry.

	For each competence, circle one number for its importance		Impo	rtanc	e
		W	eak –	→ Str	ong
1.	Be able to apply chemical knowledge and understanding to analysis of unfamiliar	1	2	3	4
	nature				
2.	Be able to apply such knowledge and understanding to the solution of qualitative	1	2	3	4
	and quantitative problems				
3.	Be able to conduct risk assessments concerning the use of chemical substances	1	2	3	4
	and laboratory procedures				
4.	Be able to demonstrate knowledge and understanding of essential facts, concepts,	1	2	3	4
	principles and theories relating to chemistry				
5.	Be able to interpret data derived from laboratory observations and measurements	1	2	3	4
	in terms of their significance and relate them to appropriate theory				
6.	Be able to recognize and analyze novel problems and plans for their solution	1	2	3	4
7.	Be able to recognize and implement good measurement science	1	2	3	4
	Be able to acquire an in-depth knowledge and understanding of an specific area of	1	2	3	4
	chemistry				
8.	Be able to be familiar with major issues at the frontiers of chemical research and	1	2	3	4
	development				
9.	Be able to read, write and present papers, and to communicate with other scientists	1	2	3	4
	in English				
10.	Be able to search for required information using chemistry and other technical	1	2	3	4
	literatures				
11.	Be able to implement the planning and design of research investigations	1	2	3	4
12.	Be able to process observed data via computer	1	2	3	4
13.	Be prepared to compete for secondary school teaching positions in chemistry	1	2	3	4
14.	Be able to apply latest computer and technology to chemistry	1	2	3	4

15. Be able to work with a high degree of autonomy in project planning	1	2	3	4
16. Be able to correct noisy data using error analysis and estimate	1	2	3	4
17. Be able to have scientific arguments with other researchers	1	2	3	4
18. Be able to take into account their physical and chemical properties in order to	1	2	3	4
handle safely chemical materials				
19. Skills required for the conduct of laboratory procedures involved and use of	1	2	3	4
instrumentation in synthetic and analytical work, in relation to both organic and				
inorganic systems				
20. Be able to implement experimental techniques	1	2	3	4
21. Be able to learn and work in foreign university and laboratory	1	2	3	4
22. Master mathematical and numerical methods	1	2	3	4
23. Be able to develop professional technology for latest researching issues	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment			

* *	*
-----	---

[Mechanical engineering competence questionnaire: students, academic, employers, graduates] Competence Survey on Globally-Required Abilities

Mechanical Engineering

Listed below are competences in the area of mechanical engineering important for the professional development of university graduates. For each of the competences, please estimate the importance for work in mechanical engineering.

	For each competence, circle one number for its importance	Importance					
		W	/eak –	→ Stro	ong		
1.	Ability to apply knowledge of the basic and applied sciences of mechanical engineering	1	2	3	4		
2.	Ability to identify and implement the most appropriate technologies for the context in hand	1	2	3	4		
3.	Capacity to create, innovate and contribute to technological development	1	2	3	4		
4.	Capacity to conceive, analyze, design and experimentally produce mechanical products and systems	1	2	3	4		
5.	Skills in planning and executing mechanical engineering projects	1	2	3	4		
6.	Capacity to supervise, inspect and monitor mechanical engineering systems	1	2	3	4		
7.	Capacity to operate, maintain and rehabilitate mechanical engineering systems	1	2	3	4		
8.	Skills in evaluating the environmental and socio-economic impact of mechanical projects	1	2	3	4		
9.	Capacity to model and simulate mechanical engineering systems and processes	1	2	3	4		
10.	Skills in selecting, mobilizing and administering material resources, tools and equipment cost-effectively	1	2	3	4		
11.	Capacity to integrate legal, economic and financial aspects in decision-making in mechanical engineering projects	1	2	3	4		
12.	Capacity for spatial abstraction, graphic representation and engineering drawings	1	2	3	4		
13.	Providing mechanical engineering solutions to societal problems for sustainable development	1	2	3	4		
14.	Skills in safety and risk management in mechanical engineering systems	1	2	3	4		
15.	Skills in using information technologies, software and tools for mechanical engineering	1	2	3	4		
16.	Capacity to interact with multidisciplinary groups towards developing integrated	1	2	3	4		

	solutions				
17.	Skills in employing quality control techniques in managing materials, products,	1	2	3	4
	resources and services				
18.	Capacity to conduct life cycle assessment for products and systems	1	2	3	4
19.	Capacity to employ mechanical engineering skills to transform local natural	1	2	3	4
	resources into products or services through value addition				
20.	Be able to solve unsolved problems in mechanical engineering	1	2	3	4
21.	Be able to develop professional technology for latest researching issues	1	2	3	4
22.	Be able to learn and work in foreign university and laboratory	1	2	3	4
23.	Master mathematical and numerical methods	1	2	3	4
24.	Be able to develop professional technology for latest researching issues	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment

*	*	*
---	---	---

[Civil engineering competence questionnaire: students, academic, employers, graduates] Competence Survey on Globally-Required Abilities

Civil Engineering

Listed below are competences in the area of civil engineering important for the professional development of university graduates. For each of the competences, please estimate the importance for work in civil engineering.

	For each competence, circle one number for its importance	Importance						
		W	eak –	→ Stro	ong			
1.	Ability to apply knowledge of the basic sciences and sciences of civil engineering	1	2	3	4			
2.	Ability to identify and implement the most appropriate technologies for the context	1	2	3	4			
	in hand							
3.	Capacity to create, innovate and contribute to technological development	1	2	3	4			
4.	Capacity to conceive, analyze, calculate and design civil engineering works	1	2	3	4			
5.	Skill in planning and programming civil engineering works and services	1	2	3	4			
6.	Capacity to build, supervise, inspect and evaluate civil engineering works	1	2	3	4			
7.	Capacity to operate, maintain and rehabilitate civil engineering works	1	2	3	4			
8.	Skill in evaluating the environmental and social impact of civil works	1	2	3	4			
9.	Capacity to model and simulate civil engineering systems and processes	1	2	3	4			
10.	Capacity to direct and lead human resources	1	2	3	4			
11.	Skill in administering material resources, teams and equipment	1	2	3	4			
12.	Capacity for spatial abstraction, graphic representation and engineering drawings	1	2	3	4			
13.	Capacity to propose solutions that will contribute to sustainable development	1	2	3	4			
14.	Skill in preventing and evaluating accidents and risks in civil engineering works	1	2	3	4			
15.	Skill in handling and interpreting field information	1	2	3	4			
16.	Capacity to interact with multidisciplinary groups towards developing integrated	1	2	3	4			
	solutions							
17.	Skill in employing quality control techniques in managing civil engineering materials	1	2	3	4			
	and services							
18.	Capacity to conduct life cycle assessment for products and systems	1	2	3	4			
19.	Capacity to employ civil engineering skills to transform local natural resources into	1	2	3	4			
	products or services through value addition							

20. Be able to solve unsolved problems in civil engineering	1	2	3	4
21. Be able to develop professional technology for latest researching issues	1	2	3	4
22. Be able to learn and work in foreign university and laboratory	1	2	3	4
23. Master mathematical and numerical methods	1	2	3	4
24. Be able to develop professional technology for latest researching issues	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment			

*	*	*
---	---	---

[History competence questionnaire: students, academic, employers, graduates] Competence Survey on Globally-Required Abilities

History

Listed below are competences in the area of history important for the professional development of university graduates. For each of the competences, please estimate the importance for work in history.

	For each competence, circle one number for its importance		Impo	ortand	e
		W	'eak –	→ Stre	ong
1.	Ability to think critical about the relationship between current events and the past.	1	2	3	4
2.	Ability to comment, annotate or edit texts and documents correctly according to the canons of the discipline.	1	2	3	4
3.	Ability to communicate orally in foreign languages using the terminology and techniques accepted in history.	1	2	3	4
4.	Ability to communicate orally in one's own language using the terminology and techniques accepted in history.	1	2	3	4
5.	Ability to define research topics that contribute to the development of history.	1	2	3	4
6.	Ability to give narrative form to research results according to the canons of the discipline.	1	2	3	4
7.	Ability to identify and utilize appropriately sources of information (bibliography, documents, oral testimony etc.) for research project.	1	2	3	4
8.	Ability to organize complex historical information in coherent form.	1	2	3	4
9.	Ability to read historiographical texts or original documents in one's own language; to summarize or transcribe and catalogue information as appropriate.	1	2	3	4
10.	Ability to read historical texts or original documents in other languages; to summarize or transcribe and catalogue information as appropriate.	1	2	3	4
11.	Ability to use computer and internet resources and techniques elaborating historical or related data (using statistical or creating databases, etc.).	1	2	3	4
12.	Ability to write in one's own language using correctly the various types of historical writing.	1	2	3	4
13.	Ability to use tools of human and social sciences (e.g., anthropology, sociology, philosophy etc.).	1	2	3	4
14.	Ability to recognize and respect for diversity in cultural background.	1	2	3	4
15.	Ability to link the methods and issues of different branches (economic, social,	1	2	3	4

politic, etc.) of historical research.				
16. Awareness of the differences in historical outlooks in various periods and	1	2	3	4
contexts.				
17. Awareness of the issues and themes of present day in historical debate.	1	2	3	4
18. Awareness of the on-going nature of historical research and debate.	1	2	3	4
19. Detailed knowledge of one or more specific periods of the human past.	1	2	3	4
20. Knowledge of ancient languages.	1	2	3	4
21. Knowledge and ability to use information retrieval tools, such as bibliographical	1	2	3	4
repertoires, archival inventories.				
22. Knowledge and ability to use the specific tools necessary to study documents of	1	2	3	4
particular periods.				
23. Knowledge of didactics of history.	1	2	3	4
24. Knowledge of Asian history	1	2	3	4
25. Knowledge of the national or local history.	1	2	3	4
26. Knowledge of one's own national history.	1	2	3	4
27. Knowledge of the general diachronic framework of the past.	1	2	3	4
28. Knowledge of world history.	1	2	3	4
29. Understanding the social role of the historian.	1	2	3	4
30. Ability to design, organize, and develop historical research projects.	1	2	3	4
31. Ability to take part in interdisciplinary research work.	1	2	3	4
32. Ability to recognize, contribute to, and participate in socio-cultural community	1	2	3	4
activities.				
33. Ability to apply historical education techniques and methods.	1	2	3	4

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment

[Business competence questionnaire: students, academic, employers, graduates] Competence Survey on Globally-Required Abilities

Business Administration

(Listed below are competences in the area of business administration important for the professional development of university graduates. For each of the competences, please estimate the importance for work in business administration.)

	For each competence, circle one number for its importance			ortanc	
		W	eak –	→ Stro	ong
1.	Developing strategic, tactical and operational planning skills	1	2	3	4
2.	Identifying and administering business risks in organizations	1	2	3	4
3.	Identifying and optimizing business processes within organizations	1	2	3	4
4.	Administrating an integral logistic system	1	2	3	4
5.	Developing, implementing, and managing business control systems	1	2	3	4
6.	Identifying functional inter relations within organizations	1	2	3	4
7.	Evaluating the legal framework applied to business control systems	1	2	3	4
8.	Producing, evaluating and managing business projects within different types of	1	2	3	4
	organizations				
9.	Interpreting accounting and financial information for the taking of managerial	1	2	3	4
	decisions				
10.	Using costing information for planning, control and decision making	1	2	3	4
11.	Taking decisions regarding investments, financing and management of financial	1	2	3	4
	resources within a company				
12.	Leadership skills, for the achievement of and following up of aims within the	1	2	3	4
	organization				
13.	Managing and developing human talent within the organization	1	2	3	4
14.	Identifying ethical and cultural aspects of reciprocal impact within the	1	2	3	4
	organization and the social environment				
15.	Improving and innovating administrative processes	1	2	3	4
16.	Detecting opportunities for undertaking new business and or developing new	1	2	3	4
	products				

17. Using information and communication technology in management	1	2	3	4
18. Managing the technological infrastructure of a business	1	2	3	4
19. Formulating and optimizing information systems for management	1	2	3	4
20. Formulating market plans	1	2	3	4
21. Ability to understanding, reading, speaking, and writing in English.	1	2	3	4
22. Ability to understand business manners particularly used in Japan.	1	2	3	4
23. Ability to understand Japanese economic structures and their history.	1	2	3	4
24. Ability to understand other Asian countries' society and economical structures,	1	2	3	4
and to build relation to those countries.				

(First)	(No.)	(Sixth)	(No.)
(Second)	(No.)	(Seventh)	(No.)
(Third)	(No.)	(Eighth)	(No.)
(Fourth)	(No.)	(Ninth)	(No.)
(Fifth)	(No.)	(Tenth)	(No.)

Comment